USING PYTHON AND FLASK DEPLOYED TEXT SUMMARIZER APP

Text Summarization

Long Article using NLP
Summary

before

Problem Statements

This article discuss about creating an application where a user can enter its
large and massive amount of textual information and can get a short summary
of its information. Most of the times, while searching through large data, user
gets distracted and lose focus. Many times the data is unstructured and user
needs to read thoroughly the whole blog/e-book/article and then reach
conclusion about its effectiveness and get his required information. It is time
inefficient task in this ever growing digital media world. In this post you will
learn how to implement a solution using Python and Flask, and hosting it on
Azure App Services. You will also learn to use Azure Cognitive service i.e.
document summarization APIwhich uses natural language processing
techniques.

Solution :

<f>
I‘l N . . Static content
! i ' HTML / Javascript / CSS)
Push / Pull request Repository Action
8D

API
Azure Functions

The algorithm is very simple. First you will have to enter the information. Then
select the length of summary required. Then the application will parse through
the content and using the “Hugging Face-Natural Language Processing
Summarization API” it will convert the content into short summary and provide
it to you.

Following are the packages used in this example.

Package Name Description
Flask For user interface and user interactions.
Hugging Face API For transforming the content into the required

length of summary using NLP.

Flask==2.0.2

requests==2.26.0

So you need to install the above packages. Here is the requirement.txt file.
You can run the pip install -r requirements.txtin your virtual
environment. Once you install all the requirements, you can create the

app.pyfile. You can find the app.pyfile in the implementation section. Visual

studio code (VS Code) can be used for development.

"https://api-inference.huggingface.co/models/facebook/bart-large-cnn"

To use Hugging Face APl you need to insert above link into your program.

Apart from this you will also need index.htmlfile for creating the application’s
interface for deploying on the web along with the style.cssfile.

https://api-inference.huggingface.co/models/facebook/bart-large-cnn

CODE FOR CREATING THE APPLICATION

import requests
from flask import Flask,render_template,url for

from flask import request as req

app = Flask(__name_)
@app.route("/",methods=["GET","POST"])
def Index():
return render_template("index.html")
@app.route("/Summarize",methods=["GET","POST"])
defSummarize():
if reqg.method== "POST":
API_URL = "https://api-inference.huggingface.co/models/facebook/bart-large-cnn”
headers = {"Authorization": f"Bearer hf_pPLxgmmLSPKeDtmvQXHCMUxXxLslpoDHnguP"}
data=req.form["data"]
maxL=int(req.form["maxL"])
minL=maxL//4
def query(payload):
Response = requests.post(API_URL, headers=headers, json=payload)
return response.json()
output = query({
"inputs”:data,
"parameters”:{"min_length":minL, "max_ length":maxL},

1) (el

return render_template("index.html",result=output["“summary text"])
else:

return render_template("index.html"™)

IMPLEMENTATION

You can use the Flask framework to show the user interface and interact with
user inputs. The Hugging Face APl is for transforming the larger content into
short summarized form.

This implementation has one route with different HTTP methods. When a user
browse the URL, the HTTP GET method gets invoked and
returnshtml.indexfile. And when a user fills the information in the input
fieldand selects the required size of summary and clicks on Summarize
button, the HTTP POST route gets invoked. In backend, you will get the
information in input field. Using the Hugging Face API, the information is
parsed and next using requests.post()the content is summarized into smaller
sentences. And finally, based on the required size of summary the summarized
text is placed into json file and render theindex.htmlfile with the json file. You
can run/debug the file using VS Code.

In the next section, you will publish the solution to Azure.

DEPLOYING TO AZURE

o0
ahh

Dewslepars

Davelop
application

¥

e
QFlask

Flow of Application Deployment

To deploy the solution to Azure, first create a repository on Github containing
all the files of your project. You will need this repository further. You will also
need the requirements.txtfile with flaskand requests packages. You need to
add the packages you installed to this.

autopep8==1.6.0
certifi==2021.10.8
charset-normalizer==2.0.7
click==8.0.3
colorama==0.4.4
Flask==2.0.2

idna==3.3
importlib-metadata==4.8.1
itsdangerous==2.0.1
Jinja2==3.0.2
MarkupSafe==2.0.1
pycodestyle==2.8.0
requests==2.26.0
toml==0.10.2
typing-extensions==3.10.0.2
urllib3==1.26.7
Werkzeug==2.0.2

zipp==3.6.0

Modify the requirements.txtfile like the following.

Then for deploying the application follow following steps.
Pre-requisites:

You need an Azure account with active Azure subscription.
Step 1: Create App Service

Login to azure portal and navigate to Azure App Service. Create new App
Service. Configure the resource group name, the App Service name, select
runtime as Python 3.10and select the region of your choice.

Create Web App

Select a subscription to manage deployed resources and costs. Use resource groups like folders to organize and manage
all your resources.

Subscription * O | Azure for Students e |

Resource Group * (D | TextShortner ~ |

Create new

Instance Details

Need a database? Try the new Web + Database experience.

MName * | textsummarizerr o

azurewebsites.net

Publish * @ Code O Docker Container O Static Web App

Runtime stack * | Python 3.10 v |
Operating System * @ Linux

Region * | Central Us v |

0 Mot finding your App Service Plan? Try a different region or select your
App Service Environment.

Select the Linux-based plan for App Service and let instance SKU be the F1
(Free) tier one, you will find that in the Dev/Test section.

App Service Plan

App Service plan pricing tier determines the location, features, cost and compute resources associated with your app.
Learn more &

Linux Plan {Central US) * (D (Mew) ASP-TextShortner-a09s v
Creata new

Sku and size * Free F1
1 GB memaory
Change size

Then click on Review and Create and create the Web App. It will take a few
minutes for Web App to be ready. Once ready, note the resource group name,
and the public endpoint URL of the Web App.

“m textsummarizerr = *
&

App Service
|/0 Search | « ' Browse I:‘ Stop C: Restart i Delete C‘ Refresh w Get publish profile [) Reset publish profile E Share to mabile
@ overview # Essentials JSON View
@ Activity log Resource group (move) : TextShortner URL : https://textsummarizerr.azurewebsites.net
H App Service P 1 ASP-TextShortner-a095 (F1: Free)

By Access control (1AM) Status : Running App Servi lan ASP-TextShortner-a095s (F1: Free)

Location : Central US FTP/deployment username : No FTP/deployment user set
@ Tags

Subscription (move) : Azure for Students FTP hostname 1 ftp//waws-prod-dm1-313 ftp.azurewebsites.windo...
&2 Diagnose and solve problems))

Subscription ID 1 60b50f32-7f55-4f1-826d-2d996cb6cTed FTPS hostname : ftpsy//waws-prod-dm1-313.ftp.azurewebsites.wind...
© Microsoft Defender for Cloud .

Tags (edit : Click here to add tags

Events (preview)
Deployment Diagnose and solve problems
r d troubleshooting experience

& Quickstart

25 with your web app.

= Deployment slots

Step 2: Prepare your flask application to deploy

We are deploying a Flask-based application on the App Service. Name the
application code as app.py.Make sure that the requirements.txt(which we
already created) and the app.pyfiles are in the same directory. Push code to the
repository which we already created on Github.

Step 3: Link code to the application
https://github.com/vaibhav-bhople/Text-Shortner
We are going to link the code to the application by linking the repository.

Go to Deployment Center and for source codeselect Github.

- textsummarizerr | Deployment Center

App Service

|/" Search | < [@ Browse [Manage publish profile <7 Leave Feedback

W Overview

Settings Logs FTPS credentials
@ Activity log

Access control (AM) @ You're now in the production slat, which is not recommended for setting up CI/CD. Leam more X

¥ Tags

Deploy and build code from your preferred source and build provider. Learn more

R
L 4
¢? Diagnose and solve problems
9

Source* Select code source
Microsoft Defender for Cloud Continuous Deployment (CI/CD)
Events (preview) GitHub
Deployment Bitbucket
Local Git
Quickstart Azure Repos
&% Deployment slots Manual Deployment (Push)
External Git

@ Deployment Center

Then sign in with your Github account and configure organization name as
your Github username and select your repository and branch as master. If you
have a workflow file in your repository select available workflow else select
add a workflow. You can see for build Runtime stack and version is already
selected as Python.

b textsummarizerr | Deployment Center

App Service
| Search | El save X Discard [F] Browse [Manage publish profile 2 Leave Feedback
& Overview
GitHub
E Activity log
Fo Access control (IAM) App Service will place a GitHub Actions workflow in your chosen repository to build and deploy your app whenever there
. Aiecess control M) is 2 commit on the chosen branch. If you can't find an organization or repository, you may need to enable additional
@ Tags permissions on GitHub. Learn more
£? Diagnese and sclve problems Signed in as vaibhav-bhople Change Account 0]
¥ Microsoft Defender for Cloud

Organization *

Events (preview) vaibhav-bhaple } ‘

Deployment Repository* ‘ Text-Shortner g ‘
Quickstart
- Branch* ‘ master ‘
Deployment slots
Deployment Cent: - . B
@ Deployment Center Workflow Option * @ Add a workflow: Add a new workflow file ‘master_textsummarizerryml' in the selected repository and branch.
Settings O Use available workflow: Use one of the workflow files available in the selected repository and branch.
{Il Configuration
Build
& Authentication
Runtime stack Python
Identity Version Python 3.10

Then click on save to set up deployment. Then the deployment workflow will
begin. You can track the deployment progress in your repository in the Actions

section.

<> Code (%) lIssues I1 Pullrequests (&) Actions [Projects [0 Wiki © Security |~ Insights 83 Settings

€ Build and deploy Python app to Azure Web App - TextShortener
Add or update the Azure App Service build and deployment workflow config #4

() Summary

Jobs
build
© bui Set up job
I deploy
Download artifact from build job
Fun detail Deploy to Azure Web App
{9 Usage

& Workflow file

It will take a couple of minutes to download the libraries from requirements

and the deployment will be successful. Wait for the deployment to finish.

<> Code (5) Issues il Pull requests () Actions [Projects M wiki © Security |~ Insights 8 Settings

€ Build and deploy Python app to Azure Web App - textsummarizerr

@ Add or update the Azure App Service build and deployment workflow config #2

([Summary
Jobs
© buid Set up job
I @ deploy
Download artifact from build job
FRun detalls Deploy to Azure Web App
{9 Usage
Complete job
4 Workflow file

As soon as the workflow is successfully completed, your app is successfully
deployed on Azure.

Check on : https://textsummarizerr.azurewebsites.net

Challenges Faced:

Identifying the dependencies and creating the requirements.txt file.
App compatibility issues.

Took more time for deployment than usual.

Identifying the errors while interruptions during deployment.

Azure provides security to your application but for information security

and higher security it is advisable to create and implement a virtual private
network having end-to-end encryption.

Business Benefit

Offers highly secure web apps development.

Offers global scalability with high availability.

Secure integration with any source codes.

Services are charged on pay-as-you-go model, which helps saving a lot of
money.

By Mr. VAIBHAV BHOPLE

	USING PYTHON AND FLASK DEPLOYED TEXT SUMMARIZER APP
	Problem Statements
	Solution :
	CODE FOR CREATING THE APPLICATION
	IMPLEMENTATION
	DEPLOYING TO AZURE
	Challenges Faced:
	Business Benefit

