
USING PYTHON AND FLASK DEPLOYED TEXT SUMMARIZER APP 

 

Problem Statements 
This article discuss about creating an application where a user can enter its 
large and massive amount of textual information and can get a short summary 
of its information. Most of the times, while searching through large data, user 
gets distracted and lose focus. Many times the data is unstructured and user 
needs to read thoroughly the whole blog/e-book/article and then reach 
conclusion about its effectiveness and get his required information. It is time 
inefficient task in this ever growing digital media world. In this post you will 
learn how to implement a solution using Python and Flask, and hosting it on 
Azure App Services. You will also learn to use Azure Cognitive service i.e. 
document summarization APIwhich uses natural language processing 
techniques. 



Solution : 

 

 

The algorithm is very simple. First you will have to enter the information. Then 
select the length of summary required. Then the application will parse through 
the content and using the “Hugging Face-Natural Language Processing 
Summarization API” it will convert the content into short summary and provide 
it to you. 

Following are the packages used in this example. 

Package Name Description 
Flask For user interface and user interactions. 
Hugging Face API For transforming the content into the required 

length of summary using NLP. 
 

So you need to install the above packages. Here is the requirement.txt file. 

You can run the pip install -r requirements.txtin your virtual 

environment. Once you install all the requirements, you can create the 

app.pyfile. You can find the app.pyfile in the implementation section. Visual 

studio code (VS Code) can be used for development. 

Flask==2.0.2 

requests==2.26.0 



To use Hugging Face API you need to insert above link into your program. 

 

Apart from this you will also need index.htmlfile for creating the application’s 
interface for deploying on the web along with the style.cssfile. 

"https://api-inference.huggingface.co/models/facebook/bart-large-cnn" 

https://api-inference.huggingface.co/models/facebook/bart-large-cnn


CODE FOR CREATING THE APPLICATION 

 

import requests 

from flask import Flask,render_template,url_for 

from flask import request as req 

 

app = Flask(__name__) 

@app.route("/",methods=["GET","POST"]) 

def Index(): 

    return render_template("index.html") 

@app.route("/Summarize",methods=["GET","POST"]) 

defSummarize(): 

if req.method== "POST": 

        API_URL = "https://api-inference.huggingface.co/models/facebook/bart-large-cnn" 

        headers = {"Authorization": f"Bearer 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"} 

        data=req.form["data"] 

        maxL=int(req.form["maxL"]) 

        minL=maxL//4 

        def query(payload): 

            Response = requests.post(API_URL, headers=headers, json=payload) 

            return response.json() 

        output = query({ 

            "inputs":data, 

            "parameters":{"min_length":minL,"max_length":maxL}, 

        })[0] 

 

        return render_template("index.html",result=output["summary_text"]) 

else: 

        return render_template("index.html") 



IMPLEMENTATION 
You can use the Flask framework to show the user interface and interact with 
user inputs. The Hugging Face API is for transforming the larger content into 
short summarized form.  

This implementation has one route with different HTTP methods. When a user 
browse the URL, the HTTP GET method gets invoked and 
returnshtml.indexfile. And when a user fills the information in the input 
fieldand selects the required size of summary and clicks on Summarize 
button, the HTTP POST route gets invoked. In backend, you will get the 
information in input field. Using the Hugging Face API, the information is 
parsed and next using requests.post()the content is summarized into smaller 
sentences. And finally, based on the required size of summary the summarized 
text is placed into json file and render theindex.htmlfile with the json file. You 
can run/debug the file using VS Code.  

In the next section, you will publish the solution to Azure. 

DEPLOYING TO AZURE 

 

 

 

To deploy the solution to Azure, first create a repository on Github containing 
all the files of your project. You will need this repository further. You will also 
need the requirements.txtfile with flaskand requests packages. You need to 
add the packages you installed to this.  

Flow of Application Deployment 



Modify the requirements.txtfile like the following. 

 

Then for deploying the application follow following steps. 

Pre-requisites:  

You need an Azure account with active Azure subscription. 

Step 1: Create App Service  

Login to azure portal and navigate to Azure App Service. Create new App 
Service. Configure the resource group name, the App Service name, select 
runtime as Python 3.10and select the region of your choice. 

autopep8==1.6.0 

certifi==2021.10.8 

charset-normalizer==2.0.7 

click==8.0.3 

colorama==0.4.4 

Flask==2.0.2 

idna==3.3 

importlib-metadata==4.8.1 

itsdangerous==2.0.1 

Jinja2==3.0.2 

MarkupSafe==2.0.1 

pycodestyle==2.8.0 

requests==2.26.0 

toml==0.10.2 

typing-extensions==3.10.0.2 

urllib3==1.26.7 

Werkzeug==2.0.2 

zipp==3.6.0 

 



 

Select the Linux-based plan for App Service and let instance SKU be the F1 
(Free) tier one, you will find that in the Dev/Test section. 

 

Then click on Review and Create and create the Web App. It will take a few 
minutes for Web App to be ready. Once ready, note the resource group name, 
and the public endpoint URL of the Web App. 

 



 

Step 2: Prepare your flask application to deploy 

We are deploying a Flask-based application on the App Service. Name the 
application code as app.py.Make sure that the requirements.txt(which we 
already created) and the app.pyfiles are in the same directory. Push code to the 
repository which we already created on Github. 

Step 3: Link code to the application 

https://github.com/vaibhav-bhople/Text-Shortner 

We are going to link the code to the application by linking the repository. 

Go to Deployment Center and for source codeselect Github. 

 

Then sign in with your Github account and configure organization name as 
your Github username and select your repository and branch as master. If you 
have a workflow file in your repository select available workflow else select 
add a workflow. You can see for build Runtime stack and version is already 
selected as Python. 



 

Then click on save to set up deployment. Then the deployment workflow will 
begin. You can track the deployment progress in your repository in the Actions 
section.  

 

It will take a couple of minutes to download the libraries from requirements 
and the deployment will be successful. Wait for the deployment to finish. 



 

As soon as the workflow is successfully completed, your app is successfully 
deployed on Azure.  

 

Check on : https://textsummarizerr.azurewebsites.net 

Challenges Faced: 
- Identifying the dependencies and creating the requirements.txt file. 

- App compatibility issues. 

- Took more time for deployment than usual. 

- Identifying the errors while interruptions during deployment. 

- Azure provides security to your application but for information security 
and higher security it is advisable to create and implement a virtual private 
network having end-to-end encryption. 

Business Benefit 
- Offers highly secure web apps development. 
- Offers global scalability with high availability. 
- Secure integration with any source codes. 
- Services are charged on pay-as-you-go model, which helps saving a lot of 

money. 
 



 
 
By Mr. VAIBHAV BHOPLE 

 


	USING PYTHON AND FLASK DEPLOYED TEXT SUMMARIZER APP
	Problem Statements
	Solution :
	CODE FOR CREATING THE APPLICATION
	IMPLEMENTATION
	DEPLOYING TO AZURE
	Challenges Faced:
	Business Benefit

